

www.nanorem.eu

Cascading Column System: Closing the Mass Balances and Results for Different Particles

Anke Wiener¹, Friederike Müller¹, Norbert Klaas¹, Jürgen Braun¹

¹VEGAS, University of Stuttgart, Germany

Motivation

- Comparison of migration and sedimentation properties of NANOFER 25S, NANOFER 25P and NANOFER STAR (NANO IRON s.r.o.)
- Control accordance of different results for nZVI mass $M_{Fe(0)}$ and transport length Δx from susceptibility measurement system, mass balance and lab
- Recommendation on particle type and injection condition for up-scaled end user application

Comparison of Nanofer 25S, 25P and Star

To ensure transferability of results to field situations parameters used in Cascading Column System base on realistic field injections.

Goal

- → Almost all nZVI of 25P particle deposited in first 0.25m
- Migration and sedimentation of sufficient quantity of nZVI for 25S and STAR particle
- Due to easier handling (powder) and no additional stabilizer, NANOFER STAR particles are recommended for next injections

Comparison of Nanofer 25S and Nanofer Star

Set	Area [cm*V]	M _{Fe(0)} [g]	Δx [m]	M _{Fe(0)} [g]				M _{Fe(0)} [g]	Δx [m]
	Susceptibility Measurement System			Mass Balance 1	Mass Balance 2	Mass Balance 3	Mass Balance 4	Lab Results	
NANOFER 25S									
XI C1 XI C2 XI C3	0.113 0.056 0.018			5.40 2.67 0.86	4.53 2.24 0.72	4.72 2.34 0.75		7.13 - -	0.58
NANOFER STAR									
XI C1 XI C2 XI C3	0.232 0.038 0.012						7.01 1.15 0.36	8.75 1.44 0.10	0.60

Set-up

Optimal Conditions for Application Group

Universität Stuttgart IWS / VEGAS Pfaffenwaldring 61 D-70569 Stuttgart (Germany) http://www.vegas.uni-stuttgart.de

friederike_mue@yahoo.de anke.wiener@iws.uni-stuttgart.de norbert.klaas@iws.uni-stuttgart.de juergen.braun@iws.uni-stuttgart.de

NanoRem - Taking Nanotechnological Remediation Processes from Lab Scale to End User Applications for the Restoration of a Clean Environment This project received funding from the European Union Seventh Framework Programme (FP7 / 2007-2013) under Grant Agreement No. 309517. This poster reflects only the author's views. The European Union is not liable for any use that may be made of the information contained therein.