

Nanoremediation – a Consultant's Perspective

Petr Kvapil, AQT Jaroslav Nosek, TUL Miroslav Cernik, TUL Paul Bardos, R3

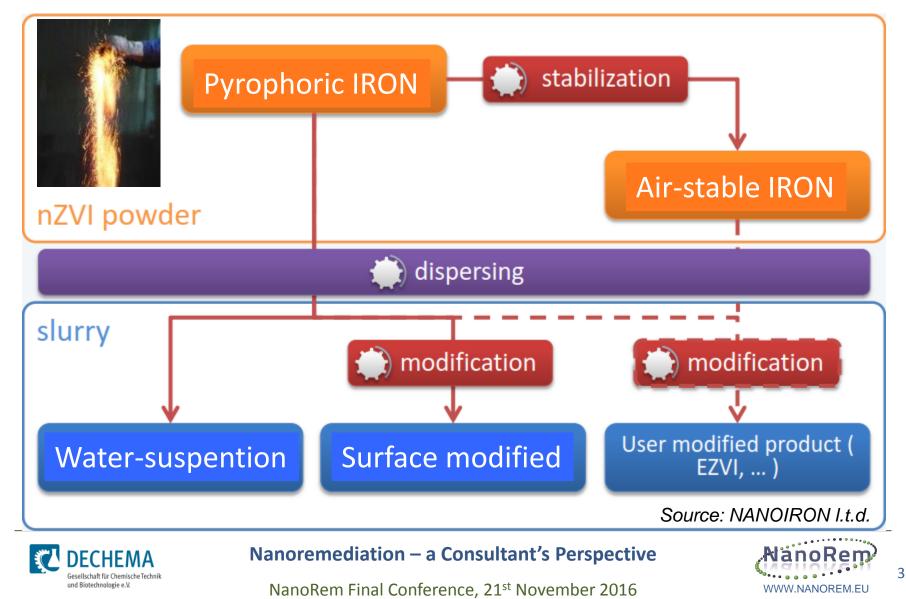
NanoRem Final Conference Nanoremediation for Soil and Groundwater Clean-up - Possibilities and Future Trends

Frankfurt am Main, 21st November 2016

1

What does it mean NANOREMEDIATION? Consultant view

- IN-SITU remediation technology, where reactive substance is based on nanosized SOLID PHASE material (Nanoparticles, nanotubes, nanocomposites, nanofibres,....).
- where the nanomaterial was used as a part of principal technology or as a part of the treatment train.
- Process limitations: material, application, monitoring, risks, costs


Nanoremediation – a Consultant's Perspective

2

Aquatest – AQT

State of art of nano-"materials" nZVI raw products and grades

State of art of nano-"materials" for remediation

- Many materials in different state of development at the market
- Only within NANOREM: nZVI (NANOFER, melted iron), iron oxides, carboiron
- Combined materials EZVI, bimetallic iron, nano-micro and iron-C composites,

Limitations – contact between reactive particle and contaminant, longevity of nanoparticles, material costs

Nanoremediation – a Consultant's Perspective

State of art of nano-"application" for remediation

 All in-situ injection methods feasible – vertical and horizontal wells or tranches, direct push, multiscreened well – packer injections)

Limitations

- Contact between reactive particle and contaminant = > detailed contaminant investigation followed by targeted injection required
- 2. Migration of particles hydraulic gradient and induced water flow required

Nanoremediation – a Consultant's Perspective

5

Aquatest – AQT Nanoirom application / injection

Nanoremediation – a Consultant's Perspective

6

WWW.NANOREM.EU

State of art of nano-"monitoring" for remediation

- No cheap method for nanoparticle monitoring at low concentrations (risks)
- Relatively cheap methods for nanoparticle monitoring at high concentrations (magnetic susceptibility measurements, total iron, color) (remediation efficiency)

Proved: migration at natural hydraulic gradient is negligible, good result when iron found in monitoring wells

Nanoremediation – a Consultant's Perspective

7

State of art of nano-"risks" for remediation

- No significant toxic effect found
- Where Nanoiron came from? from iron oxides or nanooxides
- What happens with nanoiron in soil? it becomes iron oxides or nanooxides

Limitation: fear of unknown materials and related "usage" regulation in certain EU and non EU countries

- precursor: ferrihydrite (5Fe₂O₃.9H₂O)
- mine Zlaté Hory, Oslavany
- size 2-6 nm, aggregates 150 nm
- Spec. surface 270 m²/g source: Projekt Nano (PřF UPOL)

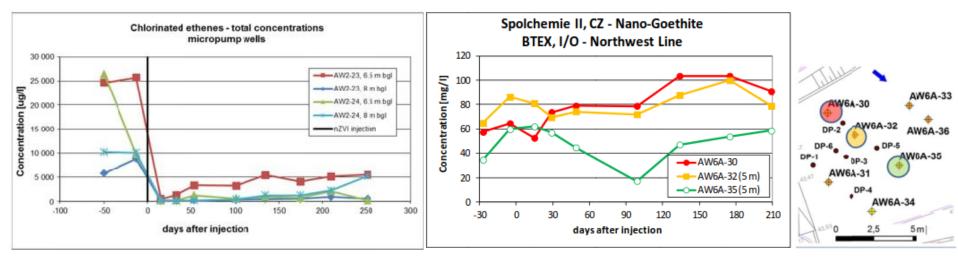
Nanoremediation – a Consultant's Per

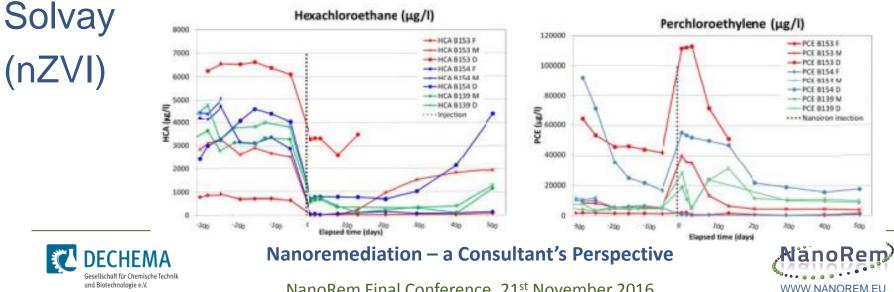
NanoRem Final Conference, 21st November 2016

WWW NANOREM EU

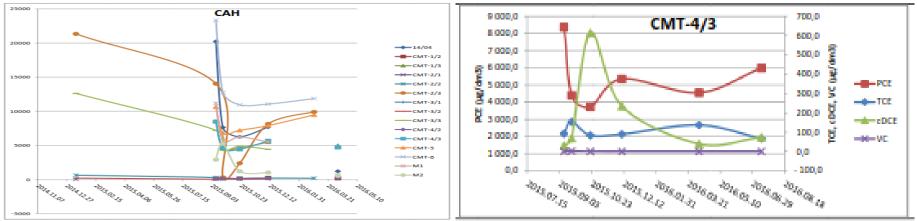
nZVI Efficiency: List of deployment (CZ.R.)

Site	Contam.	Lab/pilot/ Remed.		Type of nZVI	
Spolchemie 2004	Cl-Ethenes	L,P		ZHANG	
Kuřívody 2005, 2006, 2009	Cl-Ethenes	L,P 🙂		ZHANG, RNIP	
Permon 2006	Cr6+	L,P		RNIP	
Rožmitál 2007 – 2010	РСВ	L,P 🙂		RNIP, NANOFER	
Hluk 2007, 2008 (PRB)	Cl-Ethenes	L,P		RNIP, NANOFER	
Hořice 2008, 2009	Cl-Ethenes	L, P, R 🙂		RNIP, NANOFER	
Uherský Brod 2008	Cl-Ethenes	Р		NANOFER	
Písečná 2008, <mark>2009</mark> , 2014 - 2017	Cl-E, Cl-A	L, P, R		RNIP, NANOFER	
Františkovy lázně 2014	Cl-Eth	L,P		NANOFER	
Trutnov, 2011, 2012	Cr6+, Cl-Eth	L,P, R 🙂		NANOFER	
Spolchemie 2009, 2010, 2013 – 2015	Cl-E, Cl-M	L, P, R	©	NANOFER	

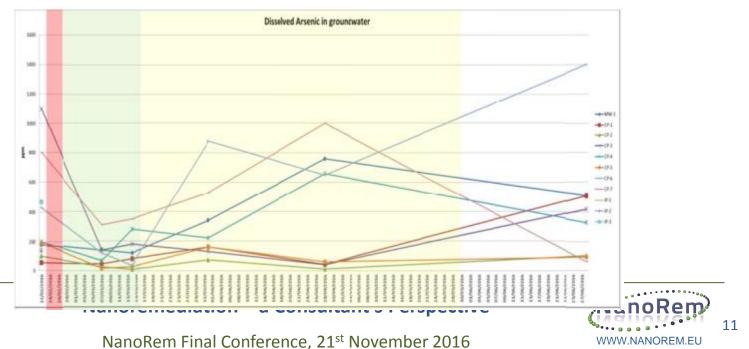

Aquatest - AQT


NANOREM Results

Spolchemie I (nZVI)


Spolchemie II (nGoethite)

10



NANOREM Results Balassagyarmat (C-I)

Nitrastur (nZVI)

List of deployments (NANOREM)

Site	Contam.	Result	Type of nZVI	
Barreiro PT	Heavy metals	Not applied	Not applied	
Nitrastur ESP	Heavy metals (As)	Satisfying migration satisfying reaction	NANOFER)
Balassagyarmat HU	Cl-Ethenes	Satisfying migration	CARBOIRON	
Solvay CH	Chlorinated hydrocarbons	Satisfying migration moderate reaction	Milled nZVI	
Spolchemie I CZ	Cl-Ethenes	Moderate migration satisfying reaction	NANOFER)
Spolchemie II CZ	BTEX	Satisfying migration	Goethite	
Neot Hovav ISR	Not studied	Satisfying migration Reaction not studied	CARBOIRON	<u>)</u>

Nanoremediation – a Consultant's Perspective

		Nanoremediation		ISCR (mZVI/dithionate)		ISBR	
Risks	Human health	No exposure once successfu deployed. Some NPs are hazardous, so are air stable and safer to handle.		No exposure once success deployed. Some reagents, such as dithionate, are potentially hazardous.		No exposure once successfully deployed. Materials are safe to har	ndle.
	Aquifer ecology	 Injections are typically in highly disturbed environments. No NP specific ecotoxicity found by NanoRem. Ultimate fate is as iron oxides which are plentiful in soils. 		Injections are typically in highly disturbed environments. Ecological impacts unstudied, but assumed minimal.		Injections are typically in highly disturbed environments. Ecological impacts unstudied, but in the long terms assumed minimal.	
	Water	Injected materials have limited lifetimes and limited travel distance, and are not associated with taint of the subsurface		Lifetimes and travel distance of injected dithionite has not been widely studied, may be extensive. The travel distance of mZVI is essentially zero. High levels of sulphate and low pH remaining after dithionate reduction		Injected substrates to stimulate bioremediatio soluble or release solubl substrates possibly causi taint for water supplies.	e
	Supporting measures	Pre-deployment risk assessment available and published.	<mark></mark>	No pre-deployment risk assessment tool.	☺	No pre-deployment risk assessment tool.	<mark>:</mark>
V	DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.			a Consultant's Perspec Ference, 21 st November 201		WWW.NANOREM.E	13

		Nanoremediation	ISCR	ISBR
Benefit	S Breadth of solutions	Wide range of treatable contaminants. Source term and pathway management applications. Suitable for situations inhibitory to microbial dehalorespiration processes.	Wide range of treatable contaminants. Tendency to pathway management applications. Suitable for situations inhibitory to microbial dehalorespiration processes	More restricted range of treatable contaminants. Potential for stall (e.g. TCE> DCE) Tendency to pathway management applications. May be prevented by toxic or other inhibitory conditions
	Speed and completeness of action and synergies	Rapid treatment effects owing to nanoscale processes. Moderate migration in the subsurface. Tendency to complete degradation of contaminants. Synergistic with ISBR and ISCR.	Slower treatment effects. Microscale ZVI does not readily move in the subsurface. Tendency to complete degradation of contaminants. Synergistic with ISBR and nanoremediation	Slower treatment effects. Soluble substrates migrate rapidly in the subsurface Tendency to stall for some problems.
	Ease of deployment	Portable systems (not requiring fixed infrastructure). Some systems require specialised deployment interventions. NanoRem is addressing the issue that deployment knowhow not widespread.	Portable systems (not requiring fixed infrastructure). Widespread know-how and systems.	Portable systems (not requiring fixed infrastructure). Widespread know-how and systems. No direct contact with contaminant needed.
	Track record	Limited track record, relatively few suppliers.	Well established technology, many vendors, moderate track record.	Well established technology, many vendors, substantial track record.

		Nanoremediatio	on	ISCR		ISBR	
Costs	Cost	Bespoke costings		Many consultants		Many	
	estimating	needed for each		have a good		consultants	
		deployment option		knowledge of		have a good	
		appraisal.		relative treatment		knowledge of	
				costs.		relative	
						treatment	
		() () () () () () () () () ()			Θ	costs.	U
	Cost levels	100%		70-90%		60%	

Cost drivers:

Gesellschaft für Chemische Technik und Biotechnologie e.V.

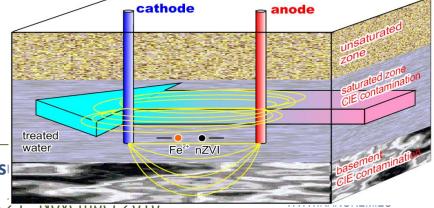
- material costs = cheaper material = lower reactivity
- installation cost = easier = cheaper
- operation costs = shorter = cheaper
- monitoirng costs = shorter = cheaper

Nanoremediation – a Consultant's Perspective

Potential for nanoremediation

- For contaminations types where high reactivity is needed (for ex. PCB)
- For sites where presence of toxic intermediates (VC) is hazardous (also buildings and cellars)
- In the proximity of used cellars or underground facilities (where also the bad smell is undesirable)
- In the proximity of water sources, the iron is not much soluble, the Iron will not harm the quality of water (bad smell, black color).
- To enhance remediation proceess started by other technologies.
- For combined processes (nano-BIO or nano-Physical)

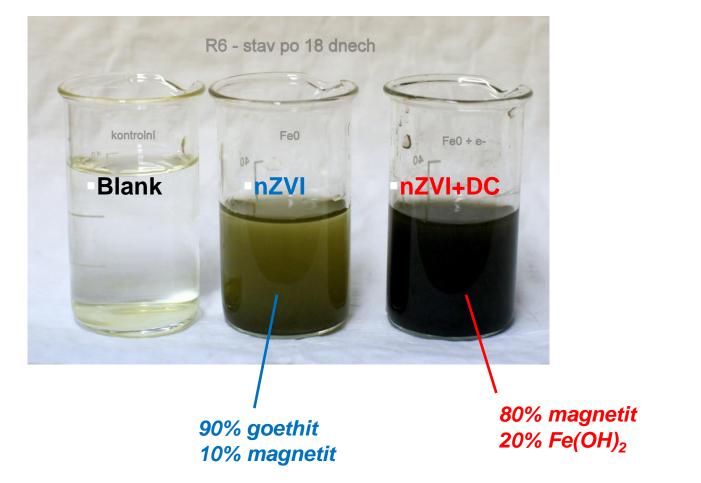
Nanoremediation – a Consultant's Perspective


n/mZVI + DC combination = INR-DC

- Chemically supported reductive de-chlorination of CIE is inherently a substitution of chlorine protons, while the electrons are consumed by the equation:
 CI₂C=CCI₂ + 4H⁺ + 8e⁻ → H₂C=CH₂ + 4CI⁻
- For the successful running of the reaction it is necessary to create a significant excess of protons and electrons in a geochemical system. Both of these conditions are virtually assured by for example Fe⁰ reaction with water.

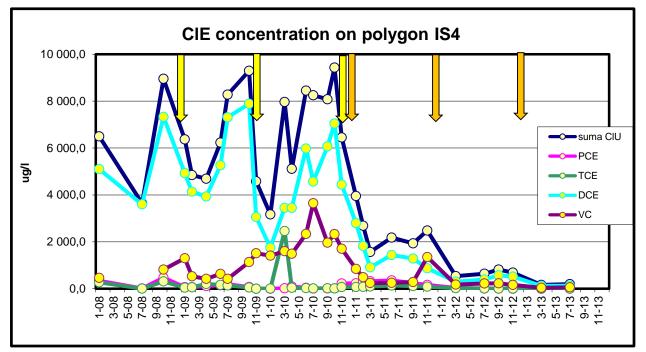
5H₂O + Fe⁰ \longrightarrow Fe³⁺(OH)⁻₃ + H₂ + 2OH⁻ + 3H⁺ + 3e⁻

• A similar effect can be achieved by providing electrons into the reorganized structure using the DC electric field. During the appropriate


current density the decomposition of water occurs to form hydrogen and the environment gets overfed by efor the process of reductive dechlorination of CIE are created.

Nanoremediation – a Cons

Combinations n/mZVI + DC combination = INR-DC


Nanoremediation – a Consultant's Perspective

NanoRem 18 WWW.NANOREM.EU

Combinations n/mZVI + DC combination = INR-DC

CIE concentration

- Observed decrease of CIE concentrations
- After nZVI injection (yellow arrow) dechloration from PCE to DCE
- Stagnancy period after DC current connection (orange arrow) rapid decrease of sum of CIE (even DCE, VC)

Nanoremediation – a Consultant's Perspective

Economical evaluation for a model case

	nZVI	ISCR (micro)	ISBR	INR-DC
Material mass (bulk) [%]	100%	500%	1000%	100%
Material costs [%]	100%	20%	10%	40%
No of injections / total time	-	6 injections / 3 years	9 injections / 3 years	3 injections and service DC / 2 years
Operation costs [%]	100%	250%	150%	110%
Monitoring costs [%]	100%	150%	150%	100%
Total costs [%]	100%	90%	60%	60%
Risk of failure	100%	130%	70%	80%

Nanoremediation – a Consultant's Perspective

Aquatest - AQT

Conclusions

Nanoremediation limitations:

- Availability of materials in sufficient quantity and quality
- Distribution of solid material in soils,
- Longevity of nanomaterials,
- Costs,
- Legal limitations

• Solutions :

- Availability Demand Solved limitations
- Detailed contaminant prospection and site characterisation
- Targetted injection
- Combination with physical and biological methods
- Spreading of information about the use, behaviour, efficiency, fate and toxicity of nanomaterials in groundwater environment

Nanoremediation – a Consultant's Perspective

Thank you for your attention

This project received funding from the European Union Seventh Framework Programme (FP7 / 2007-2013) under Grant Agreement No. 309517.

This presentation reflects only the author's views. The European Union is not liable for any use that may be made of the information contained therein.

website

Nanoremediation – a Consultant's Perspective

