Geosyntec consultants

AquaConSoil Copenhagen 2015

SpS 1C.23S. Practical Experience with Nanoremediation

Daniel W. Elliott, Ph.D.

Geosyntec Consultants, Ewing, NJ, USA

June 11, 2015

Pre-injection Batch Mixing of nZVI Slurry (Photos: Dan Elliott)

First field-scale demonstration, Trenton, NJ, 2000

Geosyntec.com

engineers | scientists | innovators

- I. Nanoremediation overview
- II. Representative technologies with a focus on nZVI
- III. Field use, lessons learned, and future outlook

Pre-injection Batch Mixing of nZVI Slurry
(Photo: Dan Elliott)
First field-scale demonstration, Trenton, NJ, 2000

5% Pd on Bio-Magnetite (Fe₃O₄) TEM image (Photo: Merethe Kleiven) *NanoRem, 2014*

I. Brownfield sites legacy in the U.S.

- Since the 1970s, hundreds of billions of \$ have been spent to clean up contaminated sites in the U.S.¹
- Scale of the problem (U.S.):
 - NAS (2012)¹: >126,000 contaminated sites remain with a cost-tocure of \$110-127 billion USD
 - EPA (2004): >300,000 sites requiring remediation through 2033 at a cost exceeding \$200 billion USD
- ~10% have "complex" hydrogeology and/or chemistry¹:
 - Low permeability zones, deep aquifers, fractured bedrock, matrix diffusion, etc.
 - Recalcitrant contaminants, DNAPL, incompatible geochemistry, etc.
- Nanoremediation is a promising remedial option

I. Nanotechnology in the remediation market

- Primary goals for nanotechnology in remediation:
 - Degrade, transform, or sequester contaminants;
 - Detect chemicals which constitute a potential environmental threat
- Transformative anticipated benefits:
 - Extend the range of treatable contaminant classes
 - Increase remediation efficacy (e.g. speed & degree of completion)
 - Portability and access to low permeability zones (e.g. sediments)
- Key considerations:
 - Ensuring a "fit" with the site conceptual model, delivery method, and overall remediation approach
 - Assessing the cost-effectiveness of the nanoremediation approach
 - Characterizing the environmental implications (e.g. fate and transport, receptor analysis, etc.)

I. Amenable contaminant classes

Others: MTBE, ClO₄, PFCs

II. Types of NPs used in remediation

- nZVI, Fe⁰
- Nano-Goethite, nFeO(OH)
- Carbo-iron®
- Fe-zeolites
- Bio-Magnetite, Fe₃O₄
- Biochar-nZVI*
- Barium ferrate**
- Zero-valent magnesium, Mg⁰
- Nanoscale calcium peroxide*, CaO₂

* - Not being investigated as part of NanoRem (2013-2017)

** - Thus far, principally at the research scale

II. Types of ZVI used in remediation

Dr. Wei-xian Zhang

II. Variety of iron nanoparticles

- Bare nZVI & nFe-oxides
- Bimetallics (Fe/Pd, etc.)
- Supported nZVI
 - Carbon or polymeric bead substrate
- Emulsified ZVI (eZVI)
 - mZVI within emulsified oil micelles
- Surface-modified nZVI
 - Surfactant/polymeric surface architectures
 - Polyacrylic acid (PAA) stabilized (others = NaHMP, CMC)

II. Conceptual model of nZVI action

Contaminant degradation by nZVI is surface-mediated

II. Upside potential – degradation of TCE by nZVI/Pd

II. Upside potential – degradation of CT by nZVI and nZVI/Pd

II. Field-scale nZVI applications

Field demonstrations (2000, 2007)

Photo: Dan Elliott

~70 Field-scale projects (thru 2014)

17 in the EU: DE, CZ, and IT

Primary target: CVOCs

39% PCE, 84% TCE, 55% DCEs, 27% VC

Typically 50-150 kg nZVI, 10-20 g/L 7,375 kg nZVI at Stephenville, TX

II. Representative case study – Stephenville, TX

Site Overview:

- Active industrial facility
- TCE release from a degreaser
- 30 x 15m source area, 100m dissolved plume
- Source area [TCE]_{aq} ~500 mg/L
- Lithology: 1m coarse fill on native silty sand, depth to groundwater ~2m

Remediation Program:

- 2008-09: 4,875kg Z-Loy™ nZVI + 43,000kg EVO + 150,000L deoxygenated H₂O
- 60 Injection wells in source area, depth to 3.5m
- <u>2011</u>: 2,500kg Z-Loy[™] + 75,000L EVO slurry + <u>50L Dhc</u>

III. Nanoremediation – a mixed track record for nZVI

- Site characterization shortcomings:
 - GW flow direction & hydrogeology not well understood
 - Presence of low K zones or preferential pathways
 - Elevated CO₃²⁻, pH, or incompatible geochemistry, etc.
- Insufficient iron dosing:
 - Iron to saturated soil ratio¹ >0.004
 - Multiple nZVI injections are generally needed
 - Natural reductant demand too high
- Issues regarding the iron quality, storage, or subsurface delivery
 - nZVI is intrinsically reactive
 - Very short shelf-life if stored as an aqueous slurry
 - Plugging of injection well screens & poor mobility

III. Nanoremediation – hurdles to broader utilization

Manufacturing & materials characterization

- Stabilize intrinsically reactive nZVI
- Lessen variability in production & storage
- Standardized QA/QC

Fate and transport

- nZVI reactive longevity & potential for regeneration
- Selectivity enhancement
- Increase subsurface transport
- Focus on more complex recalcitrant contaminants
- Implications for potential receptors

nZVI effectiveness with other RA technologies

Couple with bioaugmentation, EK

Site characterization

- Thorough site conceptual models
- Match NPs to site geochemistry, hydrogeology, & contaminants

Applications & costing tools

- NP dosage guidance
- Detailed cost-to-cure assessments

Permitting & risk issues

- Normalizing permitting requirements
- Assessing potential exposures
- Balancing remediation requirements, technology capabilities, & risks

NanoRem designed to probe many of these areas

III. Nanoremediation – pivotal role of NanoRem

What is NanoRem?

- A consortium of 28 partners: universities, national research labs, consultants, and contaminated site owners
- 4-yrs beginning April 2013 with €14MM funding (FP7)

Major goal:

 Identify cost-effective nanotechnology solutions and develop them to commercially relevant scales at EU Brownfield sites

Outlook for nanoremediation:

- NanoRem offers a crucial opportunity to overcome 15 yrs of mixed results and user experiences with nZVI
- Leverage global research into novel NPs and applications
- Develop additional large, multi-year, well-studied field projects
- Good if cost-benefit and risk analyses are favorable

Thank you!