

Nanoremediation technologies – findings of the EU FP7 NanoRem Project

Paul Bardos

environmental technology

www.r3environmental.com

NanoRem Funding

This project received funding from the European Union Seventh Framework Programme (FP7 / 2007-2013) under Grant Agreement No. 309517.

This presentation reflects only the author's views. The European Union is not liable for any use that may be made of the information contained therein.

2

Contents

- Nanoremediation nanoparticles and techniques
- Applications of nanoremediation worldwide
- The NanoRem Project and its aims
- Outcomes
 - NanoRem particles
 - Field tests
 - Behaviour (lab, scale-up, field, modelling)
 - Ecotoxicity
 - Risks, benefits & sustainability of nanoremediation deployment
- NanoRem toolbox
- Conclusions
 - UK moratorium
 - Next steps and links

What is nanoremediation?

- The use of nanoparticles (NPs) in the treatment of contaminated groundwater and soil. Depending on the use of different particles nanoremediation processes generally involve reduction, oxidation, sorption or their combination.
- NPs are usually defined as particles with one or more dimensions <100nm.
- Can include larger composite particles with embedded nanoparticles.

Deployments

- At source or in pathway
- Via wells, via direct injection
- "Naked" NPs have short lifetimes and limited travel distances
- Therefore:
 - NP modifiers (coatings, catalysts etc)
 - Co-injectants (carboxy methyl cellulose)
 - Composites

Worldwide use of nanoremediation

- NanoRem has tracked ~ 90 field applications of nanoremediation worldwide since it was first used in Trenton New Jersey in 2000
- Primarily chlorinated solvent applications
- Limited uptake compared to the expansion of *in situ* bio and ISCO over the same period
- Main barriers: complexity, perceived cost, public opinion and regulatory hurdles
- And also: a lack of well validated field applications: which becomes an "invirtuous" circle

VERFAHRENSTECHNIK FÜR ROHSTOFFE

URE TECHNOLC

NanoRem is a €14 million international collaborative project with 29 Partners from 13 countries, and an international Project Advisory Group (PAG) providing linkages to the USA and Asia.

aduatest

HELMHOLTZ

CENTRE FOR

ENVIRONMENTAL RESEARCH - UFZ

Industry, research, SMEs, public agencies, technology providers

VEGA

Karlsruhe Institute of Technolog

tecnalia Inspiring Business

NanoRem's Aims

- Unlock the true potential of nanoremediation
- Support appropriate use of nanotechnology in restoring land and aquifer resources
- Develop knowledge-based and economical remediation technology at a world leading level for the benefit of a wide range of users in the EU environmental sector
- Enhance the development of nanoremediation markets and its applications in the EU and beyond

Outcomes to be discussed

- NanoRem particles
- Field tests
- Behaviour (lab, scale-up, field, modelling)
- Ecotoxicity
- Risks, benefits & sustainability of nanoremediation deployment
- This is a very very high level birds-eye view of what has been achieved by the project
 - May be as seen by Rüppell's vulture or a Bar-headed goose? (<u>https://en.wikipedia.org/wiki/List_of_birds_by_flight_heig_hts</u>)

By RPS (Rob Schoenmaker) at en.wikipedia - Transferred from en.wikipedia to Commons., CC BY-SA 2.5, <u>https://commons.wikimedia.org/w/index.php?curid=2665705</u>

WWW.NANOREM.EU

Particles: Field tested and commercially available NPs

environmental

technology

Particles: Lab and pre-market NPs

Trap-Ox Fe- zeolitesNanoporous alumosilicate loaded withSmall molecules (depending on pore size of zeolite) - e.g. BTEX, MTBE, displaraethane, ablaseformAdsorbent + Oxidation (catalyst)UFZ Leipzig, Germany	1. Sec. 1. Sec
Fe(III) dichlormethane	
Bionanomagnetite Produced from nano-Fe(III) minerales Heavy metals, e.g. Cr(VI) Reducing agent and adsorption of heavy metals University of Manchester, UK	
Palladized Biomagnetite E.g. Halogenated substances Reduction (catalyst) University of bionanomagnetite doped with (contaminant spectrum broader than Manchester LIK palladium for nZVI) SEM image of particles	10
Abrasive Milling Milled iron Halogenated alifatics and Cr(VI) Reduction improved milling process nZVI	© CTM
Barium Ferrate Fe(VI) BTEX? (under investigation) Oxidation	X
Mg/Al particles Zero valent metals Halogenated hydrocarbons Reduction	

Contamination Expo Series 2016, 12 October 2016

WD = 11.4 mm

20.00 K X

WWW.NANOREM.EU

Field (pilot) tests

Site Name	Spolchemie I	Spolchemie II	Solvay	Balassagyarmat	Neot Hovav	Nitrastur
Site Primary	AQUATEST	AQUATEST	Solvay	Golder	Ben Gurion	Tecnalia
Investigator				<i>'Y 0''</i>	University of the	
			• •	5210	Negev	
Country	CZ	CZ	CH , at IL	HUL	IL	ES
Current use	Industry	Industry	Ind. brownfield	Inclorownfield	adustry	Ind. brownfield
Specification of	dissolved plume	residual phase	pooled phase ${f O}$	dissolvedplume	phase and	heavy metals
contamination		and displaced	and discoved	od 0o	Sume in	
(source/plume)		plyme	asme list	he helle	fractures	
Main	chlorinated (3	BTEX, styre	PCE, TREND	PGENCE, DCE	TCE, cis-DCE,	As, Pb, Zn, Cu,
contaminant(s)	hydroeitons	$\mu P^{-} \mu \gamma$	he y and		toluene	Ba, Cd
Type of Aquifer	porous, uncouit	porous, unconf.	porous on onf.	populs unconf	fractured	porous, unconf.
NP used	NANQARCSS	Napo Soethite	N'BEG12	arbo-Iron®	Carbo-Iron [®]	NANOFER STAR
	NANOFER STARE	tin. na				
NP provided by	Nano rooy.o.	UPBE a'	UVIC-FIA GmbH	ScIDre GmbH	UFZ	Nano Iron, s.r.o.
Mass of NP	200 kg / 300 kg 🔹	ANKE A C	500 kg	176,8 kg	5 kg	250 kg
injected		Neu				
Injection	Direct Push	QNett Push	Wells (with	Direct Push	Wells (with	Wells (with
System	14		packers)		packers)	packers)
System			packers)		packers)	packers)

Behaviour (lab, scale-up, field, and modelling studies) - 1

- Bench scale studies suggest added nZVI lasts from 6 to 12 months, depending on particles and environmental conditions.
- Scale up studies (VEGAS) predict/confirm field results: It is a necessary to use the right amount of NP <u>and</u> the right concentration of stabiliser <u>and</u> the right injection technology to place particles in the intended reactive zone.
- A numerical modelling tool has been developed and is designed to be a module for *ModFlow* groundwater modelling tool and should be available soon to help predict migration of NP in predefined hydrochemical environments.

Behaviour (lab, scale-up, field, and modelling studies) - 2

- A number of field monitoring techniques have been tested, incl. micro pumps and susceptibility probes (i.e. magnetic arrays).
 - Micro pumps proved effective, even though the NP have a very high density and are not soluble.
 - Magnetic arrays showed very successfully the distribution of particles.
 - Obtaining a good picture of the distribution of both the injected slurry and its NPs needs a combination of micro-pumps, temperature sensors, and magnetic arrays.
- These field scale investigations show (travel distance) of up 5 meters, depending on particle type and stabilisers used.

Ecotoxicity

- Benchmarking against standard test organisms
 - No evidence of sustained specific nano related toxicity for the NanoRem NPs
 - Possibly toxicity from milling process additives
- On site investigations
 - Emplacement environments are already highly disturbed
 - Transient effects from NP may occur
 - Effects may occur due to change in pH / redox
 - Dehalorespiration stimulated

Risks, benefits & sustainability of nanoremediation deployment

- NanoRem provided a pre-deployment risk assessment appraisal method based on best available knowledge
 - A revised version will be available as a downloadable tool
- NanoRem has carried out aggregated LCA assessment of three of its commercially available NPs
- NanoRem has carried out two initial sustainability assessments
 - A retrospective on one of the Czech pilot sites
 - An initial assessment for a UK site with Vertase-FLI

Risks - Benefits

Risks	Benefits
 Human health NPs may be pyrophoric and hazardous → comply with material safety datasheets (exposure once deployed unlikely) – ISCO agents also hazardous? Impacts on water environment and ecology Limited travel distance Limited lifetimes No evidence of specific toxicity from tested NPs in the lab or on site 	 Breadth of solutions Wide range of treatable problems (see following) Potential for situations not treatable by <i>in situ</i> bio / facilitates <i>in situ</i> bio Benefits of integrated systems (e.g. Carbo-Iron) Timescales Fast, but travel distance limited (targeted measure) Costs
 For iron based formulations ultimate fate is as oxides Manage with pre-deployment RA 	 Really requires a site specific diagnosis and general rules of thumb not useful (akin to the early days of <i>in situ</i> biorem products)

Contaminant candidates for nanoremediation

Contamination Expo Series 2016, 12 October 2016

WWW.NANOREM.EU

Deployment opportunities for nanoremediation

- Source and pathway applications
- NPs (in a carrier fluid) injected into saturated zone
- Portable (e.g. compared with pump and treat, SVE etc)
- Applicable below buildings
- "Independent" of application depth
- "Semi-passive" technology
- Transient aquifer impacts only

Therefore a "method of choice" for sensitive aquifers in the Czech Republic

Image-Source: Moghimi 2013: http://image.slidesharecdn.com/kotler-10new-productdevelopmentandproductlife-cyclestrategiesmoghimi-130424085545-phpapp02/95/kotler-10-newproduct-development-and-product-lifecycle-strategies-moghimi-32-638.jpg?cb=1366811839

Conclusions - continued

- Through NanoRem there is now a comprehensive information resource in a European context (guidance, specific tools, field application trials); scaled up production and a broader range of technical options.
- Deployment risks are likely to have been overstated
- At this stage, benefits are niche and site specific rather than a step change but they may add significant value for some projects
- Reliable cost data from field deployments is still missing
- Just over the horizon there is the promise of improved benefits and lower costs from integrated approaches:
 - Nanoremediation + in situ bioremediation
 - Nanoremediation + electrokinetics
 - Managing recalcitrants

UK Moratorium

- The UK moratorium on environmental release of nanoparticles remains.
- We hope Defra will review this in the light of NanoRem outcomes, but this will be post-publication

But this is hindered by Brexit

However, the moratorium does <u>not</u> prevent the regulator agreeing pilot deployments of nanoremediation in the field, which could ultimately support a case for the moratorium's removal.

www.nanorem.eu

Nanotechnology for contaminated land Remediation

Thank you

NanoRem Final Conference

Nanoremediation for Soil and Groundwater Clean-up - Possibilities and Future Trends

Dato	
Date.	

- 21st November 2016
- Venue: DECHEMA, Haus Frankfurt, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
- Directions: http://dechema.de/en/anfahrt.htm
- Registration: www.dechema.de/nanorem2016
- Costs:90 € including catering and the NanoRemfinal reception

Topics:

- 1) What's behind nanoremediation technique, particles,...
- 2) Field application of nanoremediation tools and lessons learned from NanoRem
- 3) Operating windows and recommendations from NanoRem

