

Case Study: Sustainability assessment for plume management

Brian Bone brian.bdbone@gmail.com

WWW.NANOREM.EU

Aims of this exercise

- To take thinking developed during the World Café to a site context and comparison with other options
- Discussion of management options based on qualitative assessment against indicators
- Consensus/differences across skill sets?
- Consensus on which indicators are most important in differentiating between options?

What is covered?

- The NanoRem sustainability assessment process - summarised
- Case study summary information
 Based on a NanoRem pilot test site
- Tasks to be performed
- Group activities
- Questions?

CEAIRE NanoRem SA process

- Simple qualitative and site specific approach
- Based on NICOLE Road Map as the best / only EU wide model
- Applies the SuRF-UK tools for qualitative assessment within the NICOLE Road Map
- Consistent with the NICOLE and COMMON FORUM Joint position on Risk Informed and Sustainable Remediation
- Retrospective options appraisal sites already selected for pilot tests

Risk-Informed and Sustainable Remediation

Joint Position Statement by

NICOLE and COMMON FORUM

9 June 2013

CEAIRE Sustainability assessment process

technology

Project framing

CLAIRE

Preparation	Description
Describe decision to be made (strategic or site options appraisal?)	Objectives (pull together project goals from preparation)
Describe the project	Boundaries (spatial, temporal, life cycle?)
Engagement – who, when, how?	Scope (which criteria and level of detail?)
Describe constraints	Methodology (how will options be compared?)
Consider reporting and dialogue	Dealing with uncertainty

CEAIRE Execution – indicator sets

All indicators are retained for discussion during assessment

Environment	Social	Economic
Emissions to Air	Human health & safety	Direct economic costs & benefits
Soil and ground conditions	Ethics & equality	Indirect economic costs & benefits
Groundwater & surface water	Neighbourhoods & locality	Employment & employment capital
Ecology	Communities & community involvement	Induced economic costs & benefits
Natural resources & waste	Uncertainty & evidence	Project lifespan & flexibility

Qualitative outputs

CEAIRE

environmenta technology

CEAIRE Case study - summary details (1)

- Based on a NanoRem pilot test site
- Former industrial site (electrical component manufacturing plant) until 1990s use of chlorinated ethenes as degreasing agents
- Source site now abandoned
- Contaminated groundwater plume 11 18 m under site owned by local government
- Geology mainly sand & gravel with impersistent clay layers
- Site used for recreation football and market

CEAIRE Case study - summary details (2)

Source: Golder Associates

environmenta technology

Conceptual model

Source	Pathway	Receptor
Chlorinated ethenes	Transport in aquifer	Groundwater Irrigation wells
Chlorinated ethenes	Ingestion of local fruit & vegetables	Residents
Chlorinated ethenes	Inhalation of indoor air	Residents, workers and site users
Chlorinated ethenes	Inhalation of outdoor air	Residents, workers and site users

environmental technology

Conceptual model (2)

Receptors

- Groundwater
- Irrigation wells
- Residents
- Site workers
- Site users & visitors
- Objective:
 - Consider options for sustainable plume management to protect receptors

Source: Golder Associates

The comparators

 Baseline – receptor management, periodic monitoring. No natural degradation of contaminants

- Pump and treat an *ex situ* technique that removes the contaminants from the ground for treatment
- Enhanced bioremediation an *in situ* technique that treats contaminants I the ground via injection of reagents to optimise conditions for biodegradation

CEAIRE Next steps with the pilot test site

- What we have done:
 - Initial project framing, including identification of stakeholders
 - Carried out by core group
- What we will do next:
 - Carry out sustainability assessment on site with wider stakeholders (post-injection; March-April 2015)
 - Report on outcomes (May 2015)
 - Contribute to generic report on sustainability of nanoremediation

- Groups are selected to have a diverse range of skills
- Each group has at least one NanoRem participant
- Each group has at least one specialist in remediation
- Each participant has a handout of information:
 - Tasks
 - Site summary
 - Project framing summary
 - Indicator sets

How will the SA be carried out?

- Task 1
 - Each group to nominate a rapporteur (non-NanoRem)
- Task 2 (~ 30 40 min)
 - Discuss sustainability assessment for the site using the headline indicator sets and with comparators identified for your group

	Option 1	Ор	tion 2				Environment	Social	Economic
Environment	Better		Environment	Option 1	Option 2		Emissions to Air	Human health & safety	Direct economic costs & benefits
Society	Equal		Emissions to Air	Trivial	Trivial		Soil and ground conditions	Ethics & equality	Indirect economic costs & benefits
Economics	Worse	Bettei	Soil and ground conditions	Significant impacts	Trivial impacts		Groundwater &	Neighbourhoods & locality	Employment & employment capital
			Groundwater & surface water	Trivial impacts	Significant impacts		surface water		
						N	Ecology	Communities & community involvement	Induced economic costs & benefits
			Ecology	None	None				
							Natural resources	Uncertainty &	Project lifespan &
			Natural resources & waste	Significant	Trivial		& waste	evidence	flexibility

WWW.NANOREM.EU

CEAIRE

- Keep it headline
- Do not get bogged down in too much detail
- How important is each indicator?
 Justify
- Can the options be differentiated?
- Are there strong areas of disagreement between participants?

Hints

• Are there strong areas of agreement between participants?

Tasks 3 & 4 (~ 30 min)

• AFTER Task 2:

- Discuss the 5 indicators within the Indicator Set allocated to your group
- Either Environment or Social or Economic
- Sub-divide into individual criteria if considered relevant
 SOC 1 Human
 Option 1

SOC 1 Human Health & Safety	Option 1	Option 2
Long term risk management performance	Meets targets	Exceeds targets
Short term risks from accidents	Does not meet targets	Meets targets
Health impacts of remediation process emissions	Exceeds targets	Meets targets

CEAIRE Tasks 3 and 4 (~ 30 min)

- Identify specific criteria that are likely to differentiate between the options compared
- Identify any areas of strong agreement and disagreement between participants
- Has this level of detail changed the opinion of the group?

Task 5 (~ 5 min)

- AFTER Tasks 2-4:
 - Individually, on a separate piece of paper:
 - Identify your skill set
 - Rank the criteria discussed in tasks 3-4 in terms of order of importance (subjective)
 - Have your views changed since the World Café this morning?

CEAIRE Aims of this exercise

- To take thinking developed during the World Café to a site context and comparison with other options
- Do not get hung-up on detail
- The outcome (which is best?) is much less important that the thought process and how dialogue changes perspective
- Have you changed your views since World Café?
- Enjoy the discussion

NanoRem

Any questions?

WWW.NANOREM.EU

Group 1	Environment	Group 4	Environment
Juergen Braun - NanoRem	Baseline	Judith Nathanail - NanoRem	Baseline
Wojciech Irminski	Pump & treat	Thomas Asprey	enhanced bio
Dominique Darmendrail		Jeremy Birnstingl	
Eugeniu Martac		Yevgeniya Tomkiv	
Waduge Anil		Petr Brucek	
Erik Joner		Julian Bosch	
Group 2	Social	Group 5	Social
Elsa Limasset - NanoRem	Baseline	Deborah Oughton - NanoRem	Baseline
Brian Wynne	Pump & treat	Christian Mueller-Wagner	enhanced bio
Laurent Bakker		Sarah Hartley	
Hans-Peter Koschitzky		Johannes Bruns	
Merethe Kleiven		Audun Heggelund	
		Rick Parkman	
Group 3	Economic	Group 6	Economic
Paul Bardos - NanoRem	Baseline	Nicola Harries - NanoRem	Baseline
Alan Thomas	Pump & treat	Astrid Verheyen	enhanced bio
Peter Vanneck		Rolf Gerhardt	
Dietmar Mueller		Craig Hampson	
Claire Coutris		Stephan Bartke	
Steffen Bleyl		Steve Edgar	

This project is co-funded by the European Union

This project received funding from the European Union Seventh Framework Programme (FP7 / 2007-2013) under Grant Agreement No. 309517.

This presentation reflects only the author's views and that the European Union is not liable for any use that may be made of the information contained therein.

